
Network Automation
Ansible, python, Juniper PyEz

Brett Runnings, BCIT

Challenges

• Large number of devices to keep track of
• Devices being added/removed from the network
• Configuration drift
• Efficient use of time
• How to collect operational data and be proactive

Solutions

• Python
• Ansible
• Junos PyEZ
• Jinja2 (templating)
• Netconf
• NAPALM (multi-vendor)

Ansible

• Tool to manage network devices
• Automatically build inventories of your devices
• Collect operational information
• Preform configuration changes
• Deploy templated configurations

Ansible playbook

• Written in YAML
• Variables in braces “ {{ }}”
• Combine with an inventory,

and some configuration
commands

• Can be run in “test” mode

Inventory File • Can be much more complex
• Configuration module

supports many options
• Merge, override, set
• replace
• Commit confirmed
• Rollbacks

• Can leverage forking to run
many connections in parallel

Jinja2 templates
• Create your templates
• In your ansible

playbook, supply the
required variables.

• Result is consistent
configurations

• Ansible & Jinja2 both
support filters
• Text manipulation
• Regular Expressions
• XML/JSON

searching
• Math

PyEZ

• Allows more granularity than
some of the ansible modules

• Response available in
different formats, XML, TXT,
JSON

• Supports operational and
configuration commands

• Many good learning resources
available

Results of the previous example…

