LEARNING ANALYTICS AT UBC

Establishment of Institutional End-to-End Learning Analytics Capability

JEFF LONGLAND CRAIG THOMPSON

Learning Analytics is the measurement, collection, analysis and reporting of data about learners and their contexts, for purposes of understanding and optimizing learning and the environments in which it occurs.

UBC LEARNING ANALYTICS PROJECT

- Two year innovation project with sustainment funding
 - Currently in year two
- Areas of focus
 - Community engagement
 - Ethics and policy
 - Technical and solutions architecture
- Project structure
 - Steering Committee
 - Learning Data Committee
 - Project team
 - Collaborators and partners

PROGRESS TO-DATE

ENGAGEMENT

- Call for proposals generated **46** submissions
- 12 pilot areas selected by adjudication committee for a variety of
 - Audiences: students, instructors, administrators
 - Data sources: Canvas, edX, other learning tools, and SIS
 - *Purposes*: real-time monitoring, reflection, prediction
- Working with end-users to identify the issues that are answerable, actionable, and common

Pilot Topic: Analytics for Teaching

An instructor-facing dashboard for Canvas that displays student activity »

VizIT: An instructor-facing dashboard for edX that shows student activity »

OnTask: Providing timely, personalized, and actionable feedback to learners »

Strategies and data requirements for effective student team formation »

Threadz: Network analysis and visualization of Canvas discussions »

Pilot Topic: Analytics for Learning

A student-facing dashboard for Canvas that displays anonymous, comparative activity data »

A student-facing dashboard for edX that provides personalised feedback based on previously successful learners' activity »

Pilot Topic: Analytics for Program Planning and Advising

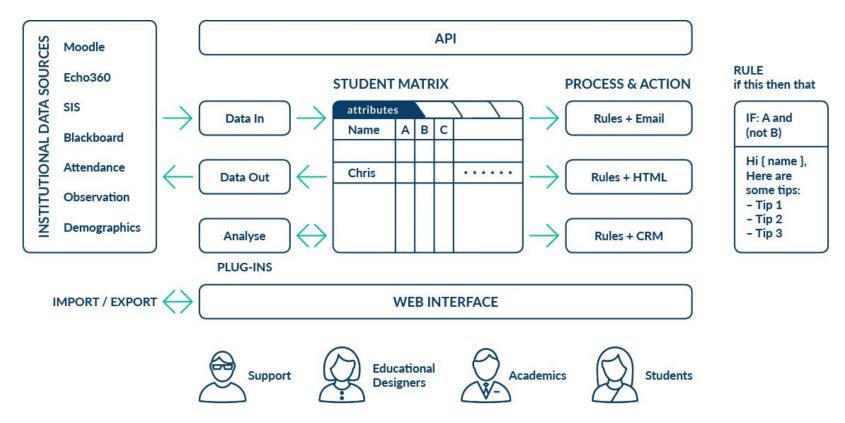
Data-driven curriculum analysis »

Predicting success in UBC program specializations to inform admissions criteria »

Registration dashboard showing real-time enrolments »

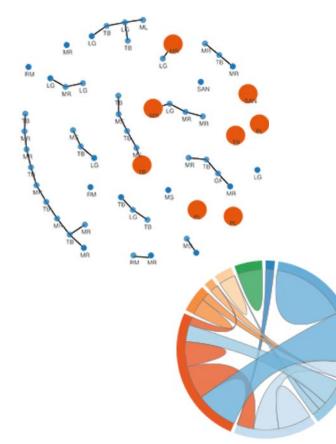
Student success dashboard for Canvas »

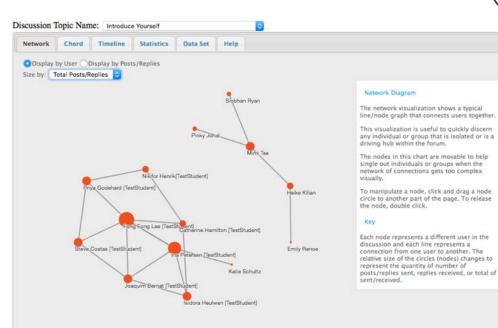
Visualizing and reporting on student enrolment pathways to inform curriculum review »



ETHICS AND POLICY

- Purpose and Principles
 - 1. Respect for persons
 - 2. Learners as autonomous agents
 - 3. Responsibility
 - 4. Equity
 - 5. Stewardship and privacy
 - 6. Accountability and transparency
 - 7. Evolving and dynamic
- Process for requesting access to learning data



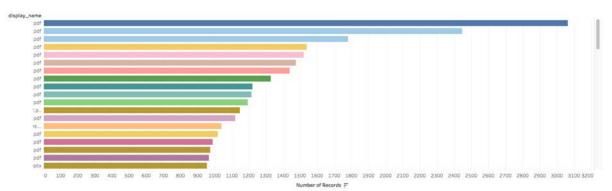

PERSONALIZED FEEDBACK AT SCALE (ONTASK)

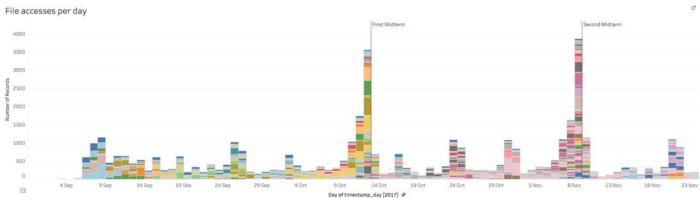
Source: https://www.ontasklearning.org/

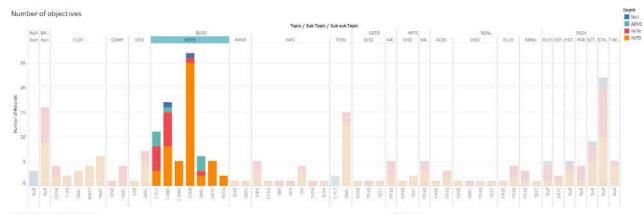
SOCIAL NETWORK VISUALIZATION AND ANALYSIS

Students With No Participation

- Leila Hamoodi [TestStudent]
- Nicolas Bravo [TestStudent]


go to Discussion

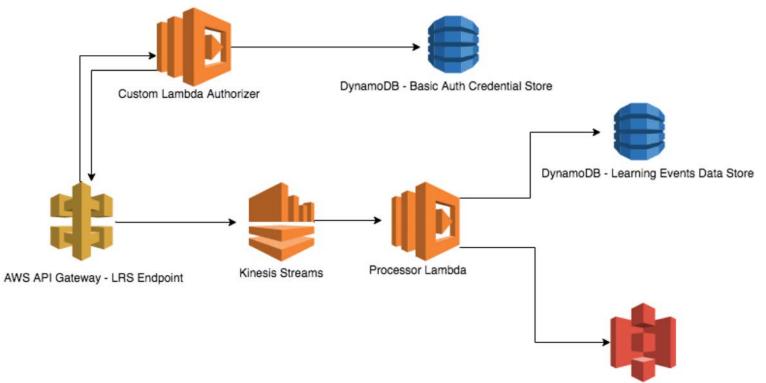



INSTRUCTOR-FACING DASHBOARDS

Total file access

CURRICULUM MAPPING

When are topics covered?



Objectives course Tel

Course	Title	Objective
PATH300	Anemias I	1. Megaloblastic Macrocytosis
		2. Non-megaloblastic Macrocytosis
		3. Myelodysplastic Syndromes (MDS)
		4. Hemolytic Anemias
	Anemias II	1. No Objectives Given
	Blood Gases	Graw the hemoglobin O2 dissociation of
		Outline 02 and CO2 diffusion and trans
		Provide examples of physiologic or clini
		Given case studies, interprot test results in order to expl
	General Hematopolesis	Recognizing hematopoietic cell morphology.
		Understanding mechanism of hematopolesis
	Hematologic Malignancies Part 3	Define 'leukemia' vs 'lymphoma'
		Differentiate the 2 major types of acute leukemia
		Provide framework to start understanding hematologic
		Show classic examples of acute leukemia
	Hematologic Malignancies Part 2	Broadly classify lymphoma, MPN and MDS
		Define and differentiate mature lymphoid neoplasms, my.
		Diagnose classic examples of lymphoma, and MPN
	HLA system	1. Lymphocyte phenotype and function
		2. Human leukocyte antigens (HLA)
		3. Hematopoietic stem cell transplantation
		4. Solid organ transplantation
	Platelots	Platelet basics - Describe how and where platelets are pr.
		Platelet basics - Describe the hemostatic function of plat
		Platelet basics - Describe the Immunologic function of pla.

LEARNING RECORD STORE PROTOTYPE

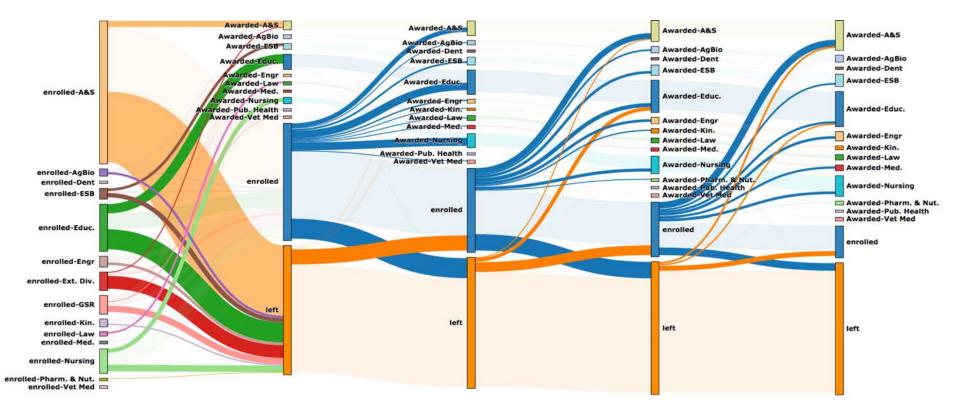
LEARNING ANALYTICS +CANVAS API HACKATHON

WHAT LIES AHEAD?

and have

YEAR TWO

- Prioritizing our pilots
 - 1. Student-facing course dashboards
 - 2. Instructor-facing course dashboards
 - 3. Mass-personalized student feedback (OnTask)
 - 4. Analytics for Program Planning & Advising
 - 5. New student-facing pilot
- On-going community engagement with students, instructors, campus community, and beyond
- Moving beyond prototypes and building aninfrastructure solution
- Developing a service model to transition from project to sustainment



COURSE DASHBOARDS: MY LEARNING ANALYTICS

MY LEARNING ANALYTICS				
hat-If Grade Calculator				
	What-If Grade		Current Grade	
	96.	6% (+15.8%)	80.8%	/o
Assignment Name	Due Date 🗸	Weight	Current Grade	What-If Grade
Task 1: Explore Canvas analytics	Sort Feb 9, 2019	6%	77.5%	50% 100
Task 2: Analytics in your own teaching or learning context	Feb 20, 2019	6%	75%	0 00 50% 100
Task 3: Get your hands dirty: Explore some 'real' data	Feb 27, 2019	6%	90%	c O o 50% 100
Task 4: Pedagogy-driven analytics questions for your local educational context	Mar 3, 2019	6%	5	50% 100
Task 5: An institutional policy on ethical use of student data for learning analytics	Mar 17, 2019	6%	2	50% 100
Task 6: You advise on institutional LA implementation	Mar 24, 2019	6%	74	50% 100
Assignment 1: Evaluation of a learning analytics tool	Apr 3, 2019	18%	75	50% 100
Task 7: Share a video tour summary of your LA adventure	May 4, 2019	6%	5	50% 100
Assignment 2b: A report on your LA adventure	May 4, 2019	40%	3	50% 100

ANALYTICS FOR PROGRAM PLANNING & ADVISING

ANALYTICS FOR PROGRAM PLANNING & ADVISING

Pre-enrollment

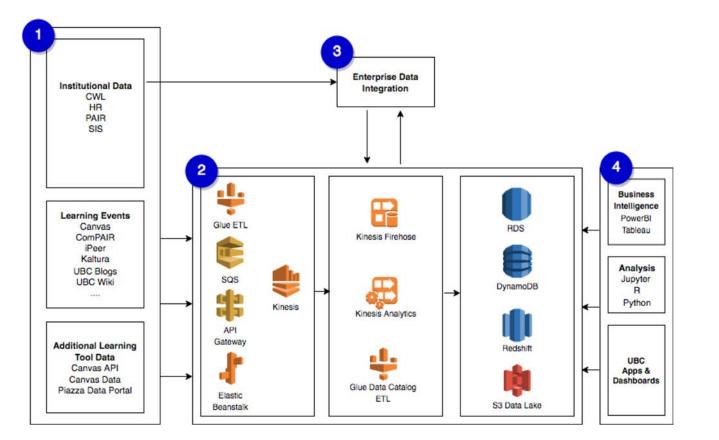
This list shows the most common courses students took before taking this course.

STATS 250	64%
CHEM 210	60%
CHEM 211	59%
BIOLOGY 173	57%
ENGLISH 125	49%
BIOLOGY 171	47%
CHEM 130	45%
PSYCH 111	44%
CHEM 125	42%
CHEM 126	42%

Co-enrollment

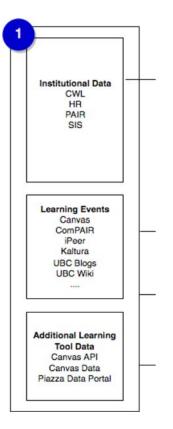
This list shows the most common courses students took while also taking this course.

STATS 250	15%
PSYCH 240	13%
CHEM 215	11%
BIOLOGY 225	11%
CHEM 216	10%
BIOLOGY 226	8%
BIOLOGY 173	8%
CHEM 210	8%
UC 280	8%
CHEM 211	7%


Post-enrollment

This list shows the most common courses students took after taking this course.

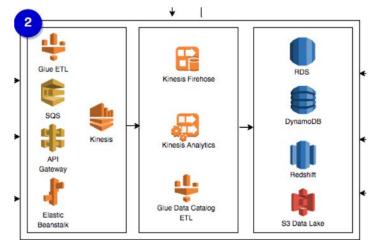
BIOLOGY 226	33%
BIOLOGY 305	28%
PSYCH 240	25%
PSYCH 326	22%
BIOLOGY 225	22%
CHEM 230	21%
PSYCH 303	21%
MCDB 310	21%
PHYSICS 236	20%
PHYSICS 235	19%



INFRASTRUCTURE SOLUTION

INFRASTRUCTURE – DATA SOURCES

Data Standards


- Contribute to Caliper and/or xAPI specifications
- Design logical and physical models for learning data in the UDM
- Determine approach for non-standard data

Data Sources

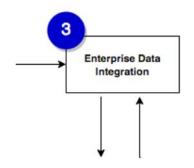
- Continue to instrument applications to generate events in Caliper or xAPI
- Determine whether EDI or point-to-point solutions will be used for batch data access to institutional ERPs (e.g. SIS)

INFRASTRUCTURE – DATA INGESTION, PROCESSING & STORAGE

Data Ingestion

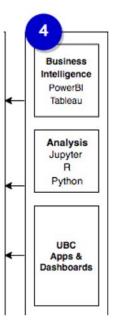
- Develop endpoints & process for receiving realtime learning events
- Implement Kinesis Streams to store data

Data Processing


- Enriching and transform events from Kinesis Streams using AWS Lambda.
- Develop jobs to extract, load and transform batch data using AWS Glue.
- Develop jobs to anonymize sets of data

Data Storage

- Design and implement data lake for raw, staging and final data using S3.
- Design and implement a data warehouse using Redshift and Redshift Spectrum.
- Design and implement data stores using RDS and DynamoDB for use cases where querying Redshift is impractical.


INFRASTRUCTURE – DATA ENRICHMENT

As learning events are received, they need to be enriched and/or transformed in order to be joined with institutional data for analysis. Enterprise Data Integration will be used to enrich events with institutional data.

INFRASTRUCTURE – DATA ACCESS AND ANALYSIS

Data Governance

- Develop integration between learning data request workflow and Collibra to track data lineage
- Implement granular data access control based on EDG guidance

Analysis and Reporting Tools

- Data access from data warehouse, data stores, or directly from the data lake for exploration
- BI tools like Tableau or PowerBI as self-service tool to build dashboards and reports
- Detailed analysis can be undertaken using Python and R, independently or with in a nothebook tool like Jupyter
- Pilot tools for data analysis, reporting and visualization.

I'M HERE, BUT THE TEAM DESERVES THE CREDIT

Andrew Gardener Programmer Analyst

Craig Thompson Research Analyst

Firas Moosvi Learning Scientist

Heidi Wudrick Communications & Change Management Lead

Justin Lee Programmer Analyst

Scott McMillan Systems Analyst

2019 Learning Analytics

Summer Institute

June 17-19, 2019 University of British Columbia

THE UNIVERSITY OF BRITISH COLUMBIA

Same Carles

jeff.longland@ubc.ca

S THE BIRDY & STOP 1. 1