Jamie Rosner
Research Specialist, UBC ARC
CC Bioinformatics National Team, Chair

## Bioinformatics vs. IT

Who's the Boss?



Bioinformatics vs. IT



#### Outline

- What is Bioinformatics?
- What are they trying to do?
- So what's the problem?
- Some solutions









































Human Genome Project (1990-2003)



- O Human Genome Project (1990-2003)
  - 1<sup>st</sup> billion bases sequenced 4 years



- O Human Genome Project (1990-2003)
  - 1<sup>st</sup> billion bases sequenced 4 years
  - 2<sup>nd</sup> billion bases sequenced 4 months



○ Raw genome files → 200 – 300GB



- Raw genome files → 200 300GB
- Microsoft Excel <= 2GB</p>





SHORT

- Raw genome files → 200 300GB
- Microsoft Excel <= 2GB</p>



#### Facts of Life

- Big data
- Advanced algorithms
- Computing power / HPC
- O Command-line, coding, etc.





















# IT folk are like Angela





### **Typical Workflow**



## Typical workflow



### Typical workflow









## What are the problems?

O Let's have a look...



## Data is Big

- O 300 Gb / sample
- O Projects 10s or 100s of terabytes
- Reference databases
- Public datasets
- O Data transfer
- O It's getting bigger



### Data is Big

- O 300 Gb / sample
- O Projects 10s or 100s of terabytes
- Reference databases
- Public datasets
- O Data transfer
- O It's getting bigger

...Solutions?



Students



- Students
- Poorly trained



- Students
- Poorly trained
- Often little guidance



### Inexperienced users + bad code

What's the worst that could happen?



Solutions?



- Training
  - O Software Carpentry
  - Compute Canada Webinars
  - UBC Research Computing Summer School
  - O Bash / Python interactive online tutorials
  - Canadian Bioinformatics Helpdesk
     → bioinformatics.computecanada.ca



#### Lots of files

O Bioinformatics pipelines generate many many files

### Lots of files

Where X is large, # of files = X

Where X is large, # of files = X



Where X is large, # of files = X

Full house



Where X is large, # of files = X

- Full house
- Eight is enough



Where X is large, # of files = X

- Full house
- Eight is enough
- O Just delete them all...



Example – MISO software can generate over 100,000 files per sample



O No more file creation...



- Solution?
  - o tar or zip files
  - "Low inode" warning



**O**;)



- Not well suited for general purpose HPC systems
- I/O bound processes
- Many large memory/CPU jobs
- Complex software environments



Solutions?



- O I/O Bound
  - O Isilon over Lustre
  - O Hadoop?
  - O Local /tmp on a thin node



- Memory/CPU bound
  - O Better code
  - Fat/fast nodes



- Complex software environments
  - Modules or containers
  - RLIBS and virtualenv
  - O Platforms



## Galaxy → GenAP

- Dedicating servers to run Galaxy
- GenAP → uses Galaxy and Compute Canada infrastructure on the backend.



## Sensitive data

- Large general purpose systems are not accessible
- Need local, or at least regional solutions
  - O GSC
  - O UBC ARC DRI



#### Conclusion

- Training
- Move to specialized systems
- O Appropriate use on existing systems
- ... so "Who's The Boss?"

