

Conference 2017

Using Machine Learning to Verify the Identity of Distance-Learning Students

Haytham El Miligi, PhD, P.Eng., Senior Member IEEE

Invented and developed by Douglas Engelbart, with the assistance of Bill English, during the 1960's and was patented on November 17, 1970.

http://www.computerhistory.org/collections/catalog/102635897

Patents

Intrusion detector based on mouse dynamics analysis

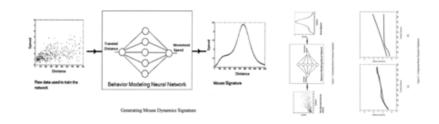
US 20040221171 A1

ABSTRACT

A biometric intrusion detection system based on mouse dynamics analysis, the analysis of mouse dynamics for a specific user generates a number of factors (Mouse Dynamics Signature) which can be used to ensure the identity of the user, an intelligent detection technique is developed to recognize differences in behaviors and detect intrusion.

Publication number Publication type Application number Publication date Filing date Priority date ⑦	US20040221171 A1 Application US 10/427,810 Nov 4, 2004 May 2, 2003 May 2, 2003	
Also published as	CA2535542A1, CA2535542C, US8230232, US20060224898, WO2004097601A1	
Inventors	Ahmed Awad Ahmed, Issa Traore	
Original Assignee	Ahmed Ahmed Awad E., Issa Traore	
Export Citation	BiBTeX, EndNote, RefMan	
Patent Citations (1), Referenced by (22), Classifications (6)		
External Links: USPTO, USPTO Assignment, Espacenet		

IMAGES (3)



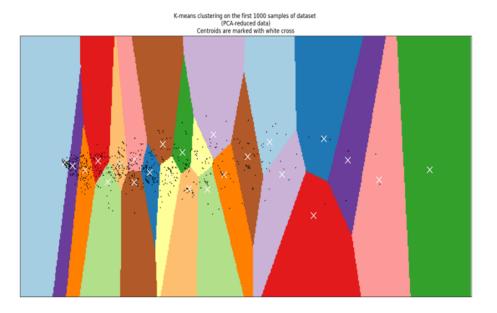
Machine Learning

1. Using Machine Learning to Predict Response Time on Stack Overflow

Stack Overflow is the largest online community for programmers to learn, share their knowledge, and advance their careers.

1. Using Machine Learning to Predict Response Time on Stack Overflow





2. Using Machine Learning to Detect Ransomeware Attacks

Innovative Integration, Inc

2. Using Machine Learning to Defend Against Ransomeware Attacks

	FuzzyHash	ShannonEntropy	Response
1	97	0.076237	0
2	97	0.054600	0
3	97	0.052020	0
4	99	0.012486	0
5	96	0.011390	0

data.head()

data.tail()

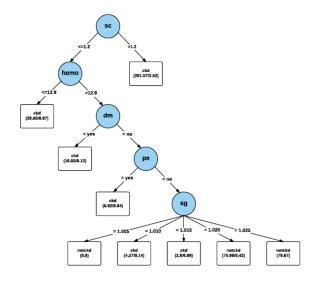
	FuzzyHash	ShannonEntropy	Response
56	0	2.771617	1
57	0	2.481546	1
58	0	2.280617	1
59	0	2.386087	1
60	0	3.211741	1

3. Using Machine Learning to Detect Symptoms of Chronic Kidney Disease

Veredus' Lab-On-A-Chip

3. Using Machine Learning to Detect Symptoms of Chronic Kidney Disease

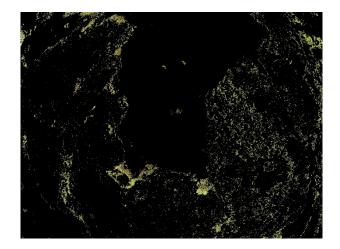
24 features collected from 400 patients



Features	Classifier	Accuracy rate	RMSE	MAE	Kappa Statistics
S4 (Our Proposed feature- subset)	C4.5 DT	99 %	0.0805	0.0225	0.9786
S5 (A. Salekin and J. Stankovic (9))	C4.5 DT	98 %	0.1072	0.0329	0.9572

4. Fusing image processing and machine learning to identify invasive plant species in high resolution images

4. Fusing image processing and machine learning to identify invasive plant species in high resolution images



5. Predicting the outcome of future soccer matches

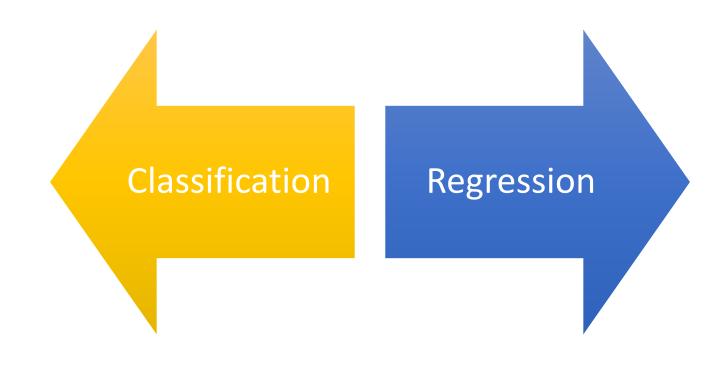
5. Predicting the outcome of future soccer matches

200,000 soccer matches

	Team	ACC	RPS
13	Team DBL4 **	0.5194175	0.2054196
1	Team OH	0.5242718	0.2063071
8	Team ACC	0.5145631	0.2082558
4	Team FK	0.5388350	0.2086510
10	Team DBL1 **	0.5048544	0.2149250
6	Team HEM	0.4660194	0.2176647
12	Team DBL3 **	0.4563107	0.2210731
15	League Priors***	0.4514563	0.2254204
2	Team EB	0.4854369	0.2258271
14	Global Priors***	0.4514563	0.2260854
9	Team LJ *	0.4126214	0.2312974
11	Team DBL2 **	0.3640777	0.3469738
7	Team AT	0.3883495	0.3980583
3	Team LHE	0.3398058	0.4514563
5	Team EDS	0.3592233	0.4514563

6. Using Keystroke Dynamics to Verify the Identity of Smartphone Users

Machine Learning



Distance Learning Education

Advantage:

• Provides opportunities for students to pursue their education where and when they like.

Challenge:

• Ensuring Academic Integrity in Distance Education.

Using Technology to Verify Identity

✓ One-Time Authentication

✓ Continuous Authentication

Types of Authentication

Passwords

Aw&234mn\$%

Tokens

023456122595

Biometrics Physical & Behavioral

Types of Authentication

Physical

- Fingerprint
- Face Recognition
- etc.

Behavioral

- Gait Analysis
- Keystroke
 - Dynamics

etc.

Keystroke Dynamics

The way you type is unique

Image: Wikimedia Commonshitps://www.google.ca/url?a=i&act=i&acd=is&acd=i

Keystroke Dynamics

What happens when you touch the screen?

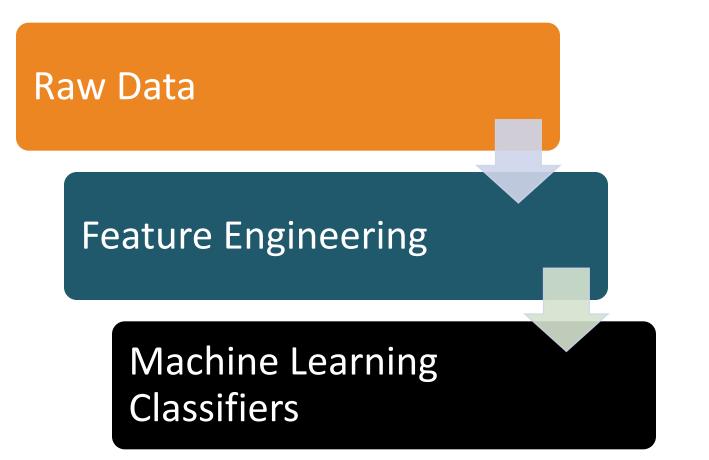
https://www.youtube.com/watch?v=FyCE2h_yjxl

Image: https://www.google.cs/url?a=i&rc=j&caurc=images&cd=&&cad=rja&uact=&&ecd=OahUtEwjp4Dir/bTAhUQ6GMRH8_CFOQRMBw&url=httpSi3AHi2FH2Fwww.goodgearguide.com.auX2FartideK2F355522H2Fapacitive_ys_relative_toucharceenth2F&pigeAFQCH2eSHW53In9Pcep2LBoKcD3FgDQ&ust=14912426034301

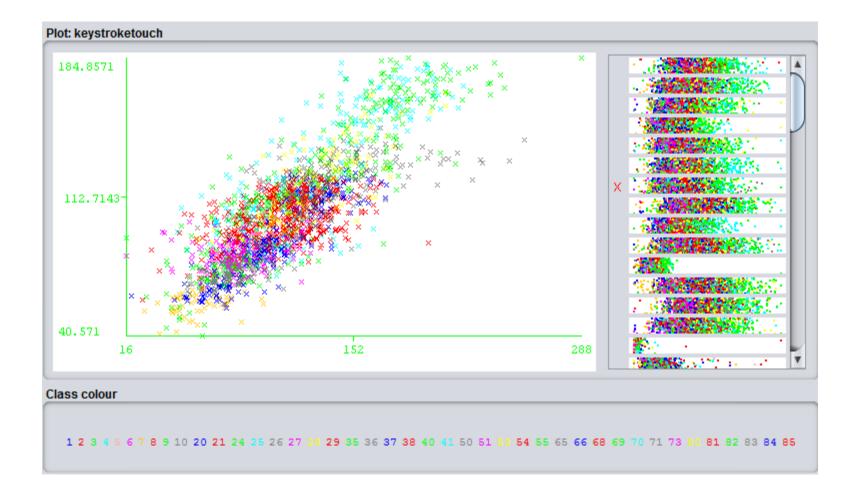
Keystroke Dynamics - Touch Events

Image:https://www.adimedia.net/wp-content/uploads/2013/09/touch_events.png

Keystroke Dynamics - Design Flow



ML classifiers try to identify predictive features



to correctly classify (and, hence, identify) users

Keystroke Dynamics - Literature Review

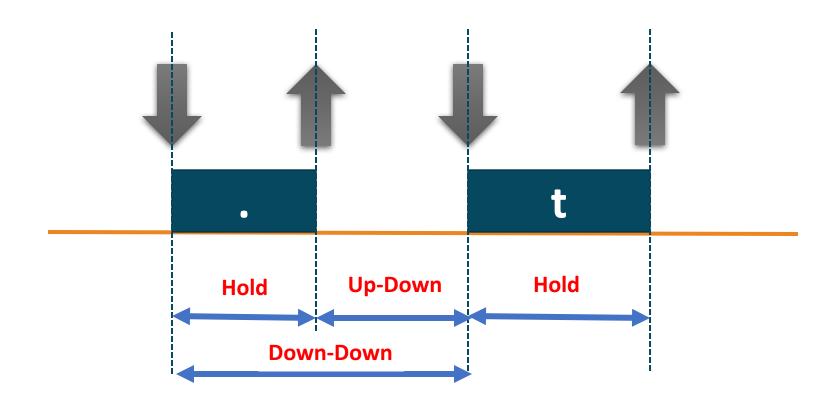
 How many features can we extract from touch events?

.tie5Ronal

71 Features

M. Antal, L.Z. Szabó, *Keystroke dynamics on android platform*. Procedia Technol. 19, 820–826 (2015). In: 8th International Conference Interdisciplinarity in Engineering

Feature Engineering- Literature Review



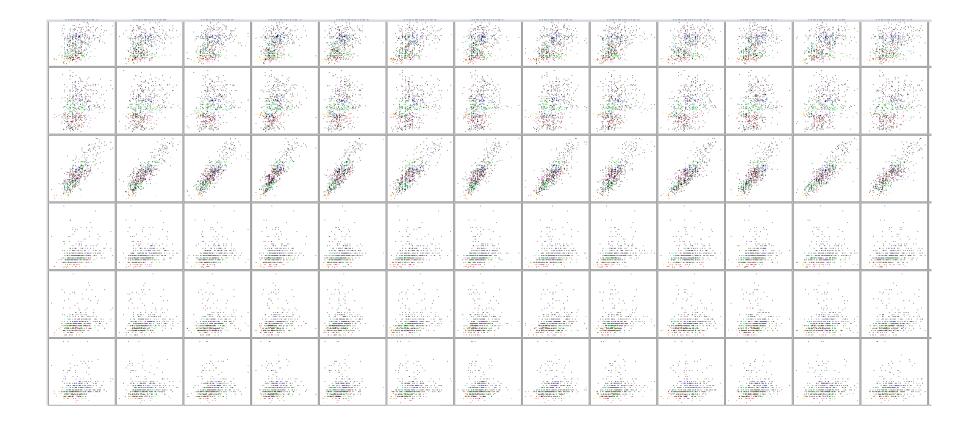
Feature Engineering- Literature Review

.tie5Ronal

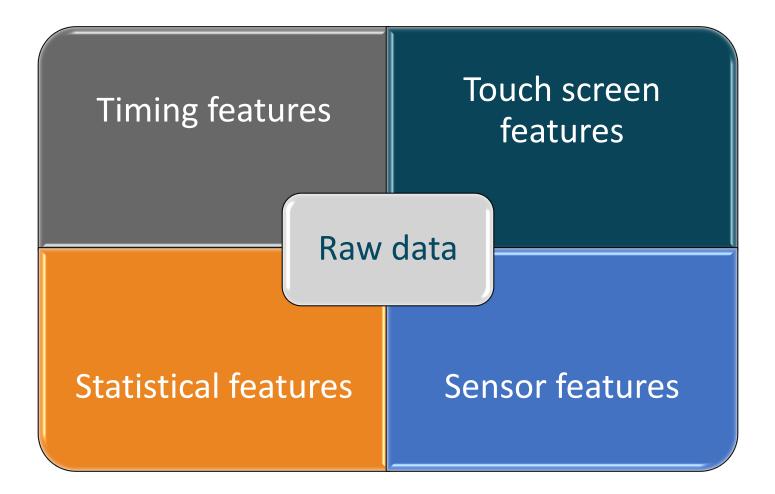
Feature name	Explanation	Number of features
Key hold time (H)	Time between key press and release	14
Down-down time (DD)	Time between consecutive key presses	13
Up-down time (UD)	The time between key release and next key press	13
Key hold pressure (P)	Pressure at the moment of key press	14
Finger area (FA)	Finger area at the moment of key press	14
Average hold time (AH)	Average of key hold times	1
Average finger area(AFA)	Average of key finger areas	1
Average pressure (AP)	Average of key pressures	1
Total		71

M. Antal, L.Z. Szabó, *Keystroke dynamics on android platform*. Procedia Technol. 19, 820–826 (2015). In: 8th International Conference Interdisciplinarity in Engineering

Keystroke Dynamics Features



Feature Engineering- Literature Review



Feature Engineering: iProfile

.tie5Ronal

156 Features

Feature Engineering: iProfile

.tie5Ronal

- More Timing Features (Tri-graph)
- X & Y Precision
- X & Y Coordinates
- Device Signature
- Sensors

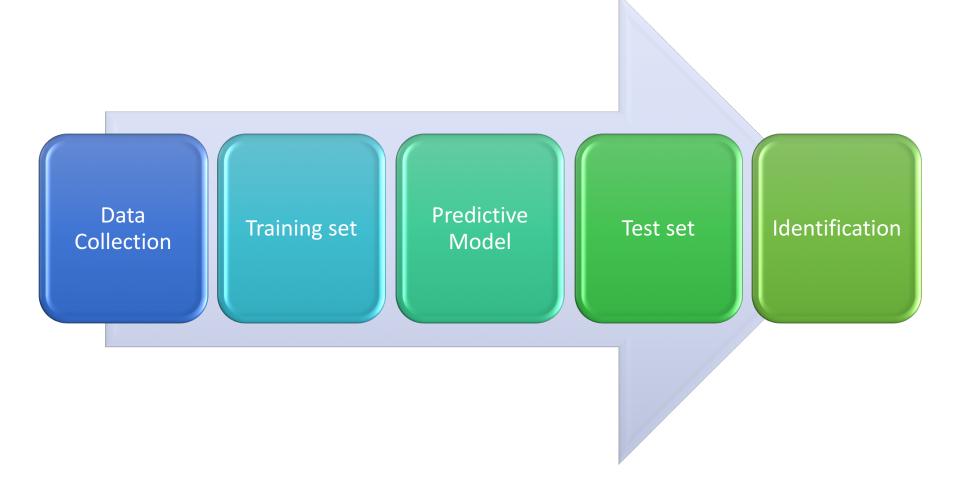
Machine Learning

.tie5Ronal

1		
Raw Data	Feature Engineering	Machine Learning
Collect timestamps, pressure values, area, X,Y coordinates and precision, and sensor data at Touch events.	Create a training dataset that represents the typing behavior of smartphone users. (Training set)	Use Machine learning classifiers to identify the user based on their typing patterns. (Test set)

Image: https://www.google.col/w13wilket-jkq=kesrc=kkource=imageAcd=kcad=ipikuet=8kwed=0abUEwjp4Dirh%TAbUQ6GMMHB_CFGQN#Bw&url=httpsI3AV3FU3Fwww.google.com.av/13FaticleN255552XBFGqaactive_vr_resistive_touchsreenent3Fkpsig=4FQ(NF2e5Hv/S1n9Feq2LBoKCD3FpQkwst=195324EGQ

Machine Learning ⁻ Supervised Learning



Machine Learning

etter

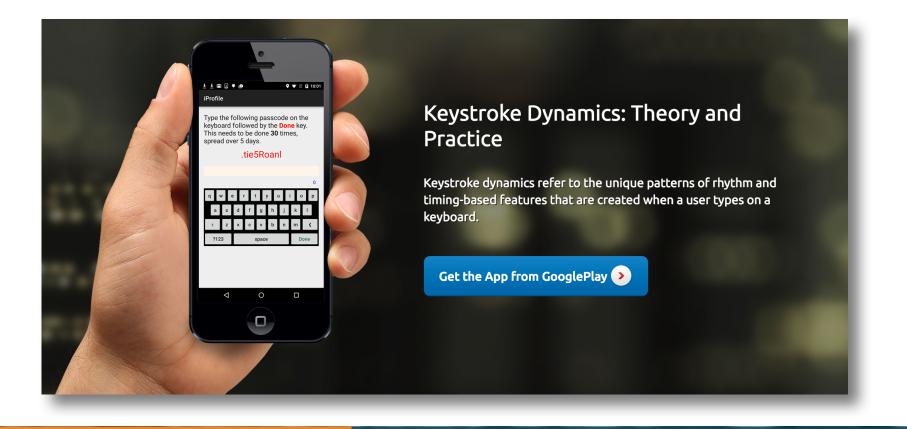
.tie5Ronal

English,Sony

Performance Evaluation

- Cross Validation
- Correctly Classified Instances
- False Acceptance Ratio
- False Rejection Ratio
- Equal Error Rate

iProfile Project: http://www.iprofileapp.com/



iProfile App

